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Absfrucf- We present a low-complexity quantization scheme' 
for the implementation of regular (3 ,6 )  LDPC codes. The 
quantization parameters are optimized to maximize the mutual 
information between the source and the quantized messages. 
Using this non-uniform quantized belief propagation algorithm, 
we have simulated that an optimized 3-bit quantizer operates 
with 0.2dB implementation loss relative to a floating point 
decoder, and an optimized 4-bit quantizer operates less than 
0 . 1 ~ 3  quantization loss. 

I. INTRODUCTION 
Low-Density-Parity-Check (LDPC) codes[ 11 have recently 

received a lot of attention because of their excellent error- 
correcting capability. LDPC codes have been shown to be able 
to perfonn close to the Shannon limit[2]. In the past decade 
or so, much of the research on LDPC codes has focused 
on the analysis and improvement of codes under decoding 
algorithms with floating point precision. However, to make 
LDPC codes practical in the real world, the design of an 
efficient quantization scheme used in hardware implementation 
is crucial. 

Belief propagation algorithm is used to decode LDPC codes. 
The standard belief propagation aIgorithm defines real-valued 
messages passing along edges in a code graph. The standard 
way to simulate this algorithm is to store and update the 
messages in a very accurate representation such as floating- 
point numbers. However, for very high-speed LDPC decoders, 
it is clear that the high complexity associated with computing 
and storing a very accurate representation is to be avoided 
if possible. Therefore, we propose a low-compIexity LDPC 
quantization scheme to make efficient hardware implementa- 
tion possible. 

In this paper, we present a general quantization scheme 
whose parameters we have optimized to target regular (3,6) 
codes. In addition to being a test-bed for comparing quantized 
algorithms, this class of codes remains an appealing choice in 
rate 3 applications that cannot tolerate the error floors typically 
induced in codes highly optimized to perform close to capacity. 

11. MOTIVATION 
The advantages of using a low-complexity quantization 

1) In the belief propagation algorithm, messages passing 
along edges in a code graph may have to be stored. 

i 
schemes are many. They include: 
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Fig. 1. Complexity proportiona1 to quantization 

The memory needed scales with the n-bit quantization 
as O(n) .  

2) The number of interconnect wires to connect variable 
nodes and check nodes is proportional to the n-bit 
quantization. The complexity of interconnect routing 
scales at least linearly with n. 

3) A smaller n-bit quantization makes it simpler for vari- 
able nodes and check nodes to update the messages. The 
logic complexity of variable nodes and check nodes units 
are often more than linear with n-bit quantization. In the 
worst case, an n-bit-input n-bit-output look-up tabIe has 
Iogic complexity 0 ( 2 n ) .  Other schemes have complexity 
which scales as O(n2).  

Recently, several research groups have developed LDPC 
decoders running on FPGA.[3]{4] New generations of FPGA 
chips, such as Xilinx Virtex-I1 and Virtex-4, provide a suf- 
ficient amount of on-board block memory for the memory- 
demanding applications of digital signal processing. However, 
these devices also impose a practical constraint since the block 
memory is only divisible into 4-bit wide, or high-resolution 
such as 9-bit, 18-bit, or 36-bit.[5][6] Therefore, in order to 
utilize the on-board memory efficient, we should apply a n-bit 
quantization scheme compatible to the block memory division, 
9-bit quantization provides very fine resolution, but can limit 
the size of code implementable in the device and can require 
significant amounts of power to be consumed. By comparison, 
an efficient 4-bit quantization can allow larger codes to be 
decoded, and is especially amactive if it can achieve small 



quantization loss. 

111. QUANTIZED BELIEF PROPAGATION ALGORITHM 

In [B] a general non-uniform quantized belief propagation 
algorithm to decode regular LDPC codes is proposed. That 
scheme was a generalization of a message passing rule de- 
scribed in [9]. In it, the messages representing the likelihood 
ratios are essentially compressed by each computation node 
before being transmitted to the adjacent computation nodes. 

The operation of each type of computation node (check 
and variable) occurs in a domain in which updates can be 
performed through simple additions and subtractions. For 
the variable nodes, this is essentially the log-likelihood-ratio 
(LLR) domain or ”reliability” domain. For check nodes, the 
domain is called ”unreliability” domain. Note that values in 
the two computational domains are typically represented by 
many more bits than are required to transmit and store inter- 
node messages. 

The functions Qv and Qc which quantize the messages in 
the reliability domain and unreliability domain respectively 
into n-bit compressed messages. Complimentary to these are 
the functions $u and & which restore the n-bit compressed 
messages into the computational domains of each node. Note 
that since variabIe nodes always send messages to check nodes 
and vice-versa, a message which is compressed from the 
reliability domain will always be restored into the unreliability 
domain, and vice-versa. 

Initially, information from the channel is interpreted and 
quantized by a channel quantizer Qch which takes real-valued 
log-likelihood-ratios and produces a quantized representation. 
The function $ch takes a message produced by the channel 
quantizer and outputs a value to be used by the variable node. 

At each iteration the variable node produces the messages 
vi+ At iteration 0, the messages are given by vi,j (0) 

(0) = Qch (channel$) i E {l..n} (1) 

At the tth iteration, the parity check phase occws first. All 
T check node units read the variable-to-check messages vi+ 
from some edge memory connecting the ith variable node to 
the j t h  check node in the code graph, update the message by 
equation 2, then write the resulting check-to-variable messages 
uj-i back to the edge memory according to the code graph 

. connections. 

uj-+i(t)  = Q c ( E d c ( u i ~ + j ( t -  l ) ) ) , j  E {1..r} (2)  

where i’ ranges over all edges connected connected to the 
j t h  check node excluding i, Qc is the quantization rule for the 
check-to-variable message ug+, and qic is the reconstruction 
function for the variable-to-check message v++. The archi- 
tecture diagram of a check node unit is shown in Fig.2. 

2’ 

Next, the variable phase occurs. n variable node units 
read the check-to-variable messages uj,, from edge memory, 
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Fig. 3. Variable Node’s architecture 

update the message by equation 3, then write the variable-to- 
check messages vi+ back to edge memory according to the 
code graph connections. 

, i  E {Ln} 

where j’ ranges over all edges connected connected to the 
ith variable node excluding j, Qv is the quantization rule 
for the variable-to-check message wi-j, is the reconstruc- 
tion function for the check-to-variable message u+i, and 
q5ch i s  the reconstruction function for the channel message 
Qch (channel;). The architecture diagram of a variable node 
unit is shown in Fig.3. 

At the final Kth iteration, hard decisions Xi  are made in 
variable nodes following: 

(4) 
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Fig. 4. Quantization of channel messages 

TABLE I 
OPTIMIZED 3 -BIT QUANTIZATION PARAMETERS: RECONSTRUCTION 

VALUES 

TABLE I1 
OPTlMIZED 3-BIT QUANTIZATION PARAMETERS: QUANTIZER INTERVALS 

Iv. OPTIMIZING THE QUANTIZATION PARAMETERS 

We targeted regular (3,6) codes to optimize the quanti- 
zation parameters. In order to optimize the error-correcting 
performance in the quantization scheme, the intuition is to 
maximize the mutual information between the source and the 
quantized message. As the binary source signal is corrupted by 
the gaussian noise channel, the signal before the quantization 
process is a Gaussian-distributed real-valued message Y = 
X + noise. Therefore, the mutual information between X 
(binary source) and Y (Gaussian channel output) is: 

a3 

W Y l  - d)&/ v; Y) = 1 + J Pr(yIz) log,(l+ P r ( y l z )  
-w scak. Initial values for the other four parameters can be found 

similarly, 
After initial values of the quantization parameters are de- 

termined, these values are optimized using both simulation 
and density evolution. Currently, significant amount of hand- 
optimization is used, and we have not had time to explicate 
our optimization procedures in detail. 

Using this strategy, we found several sets of optimized non- 
uniform quantization parameters, and listed as follows: 

Table I: Optimized 3-bit Quantization rules: Reconstruction 

Table 11: Optimized 3-bit Quantization rules: Quantizers' 

a rgmaxI (X;  Z) = argmax{l+  (7) Table 111: Optimized 4-bit Quantization rules: Reconstruc- 

Table I V  Optimized 4-bit Quantization rules: Quantizers' 

Next, the n-bit quantizer maps the real-valued message Y 
into the appropriated quantized message z according to the 
quantization parameters, Z = Qch (Y) . (See Fig.4) Therefore, 
the mutual information between the binary Source x and the 
quantized message 2 is: 

I ( X ;  Z )  = 1 + Pr(.zlzl log, (1 -t- 
z 

functions &(z), &(z),and &(.). In order to maximize the mutual information, the quantiza- 
tion functio QT i s  found such that: 

interval values Qch(ch), Qo(v),and Qc(c). 

tion fhnctions #ch(z), Q,(z),and 4C(x). 

6' 
Pr(zl - z) - Pr(.4x) log,(l+ 

z Pr(z'z) interval values Qch(ck): Qv(v),and Qc(c).  
where 

Q;;(Z) V. SIMULATION PERFORMANCE 

(8) Using the optimized 3-bit and 4-bit quantization parameters 
targeted for regular (3,6) codes, we simulated our proposed 
non-uniform quantization scheme on a (4096, 2048) regular 
code. Using the 3-bit optimized quantizer, the LDPC decoder 
operates with 0 . 2 d B  implementation loss relative to a floating 

Pr(z1x) = J PdYWdY 
min Q;; ( z )  

Once Qch is determined, initial values for dch can be found 
by taking the midpoints of Qch quantized to an appropriate 



TABLE Ill 
OPTIMIZED 4-BIT QUANTIZATION PARAMETERS: RECONSTRUCTION 

VALUES 

0 
1 
2 

3 

0 5  ch 50.5 05 w 510 c >210 
0.5< ch 51.0 IO< v 520 115< c 5210 
l.O< ch 51.5 20< v 530  67< c 5115 
1.5< ch C2.l 30< v <42 36< c <67 
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Fig. 5 .  Simulation performance of various quantization scheme 

point belief propagation decoder. Using the 4-bit optimized 
quantizer, the LDPC decoder achieves quantization loss less 
than O.ldB.(See Fig. 5) For the sake of quantization simplicity, 
we adopted the optimized 3-bit quantizer into our FPGA-based 
structured LDPC decoder.[3] 

VI. COMPARING NON-UNIFORM QUANTIZATION AND 
UNIFORM QUANTIZATION 

[7]  examined various uniform quantization schemes in- 
cluding uniform quantized offset BP-based decoding algo- 
rithms in detaiIs. While computationally more involved, our 
proposed non-uniform quantization schemes outperforms the 
unifom quantized counterpart when constrained by stored 
bit width. For example, decoding a regular (8000, 4000) 
LDPC code, [7]'s 5-bit uniform quantized offset BP-based 
algorithms suffers a degradation of O.ldB compared with the 
unquantized BP algorithms. In Comparison, simulating on a 
similar block-length (8 192, 4096) regular LDPC code, our 
proposed 4-bit non-uniform quantization scheme operates less 
than 0 . l d B  implementation loss relative to a unquantized BP 
decoder.(See Fig. 6) Benefiting from a smaller quantization 
bit number while enjoying less implementation loss, non- 
uniform quantization may be preferable to be adopted in 
hardware implementation of LDPC decoder, especially on 
a FPGA-platform in which 4-bit quantization optimizes the 
block memory utilization. 

TABLE IV 
OPTIMIZED +BIT QUANTIZATION PARAMETERS: QUANTIZER INTERVALS 

18< c 536 
7< c 518 
2< c 57 

ch >5.0 0 5  c 52 

VII. CONCLUSION 
We have presented a general non-uniform low-complexity 

quantization scheme for the implementation of LDPC de- 
coders, and demonstrated the 3-bit and 4-bit optimized quan- 
tization rules for regular ( 3 , 6 )  LDPC decoders. Maximizing 
the mutual information between the binary source and received 
quantized message allows the optimization of quantized LDPC 
decoding. As demonstrated by this work, an efficient low- 
complexity quantization can reduce the memory requirements 
and routing complexity in the hardware implementation of 
practical LDPC decoders. 



Fig. 6. 5-bit uniform quantizer Vs. 4-bit non-uniform quantizer 
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